车联网渗透率_车联网渗透测试技术

hacker|
237

什么是车联网?它的工作原理是怎样的?什

车联网的概念来源于物联网,即车辆物联网,其核心和基础仍然是互联网。它的工作原理是利用安装在车辆上的各类车载终端设备(如:GPS、摄像头、ECU、传感器、行驶记录仪等)采集车辆视频画面、运行参数、周边环境以及预测参数等信息,并借助无线通信信息技术,将这些信息传输至服务器进行处理与分析,最终提供给用户的应用服务。  

比如,工程车上安装的北斗行驶记录仪,车辆启动后北斗记录仪开始工作,详细记录车辆行驶轨迹,并通过无线网络传输给所在单位或监管部门,方便管理人员了解车辆是否存在行驶异常问题。

360年度汽车安全报告:两种新型攻击模式引关注

汽车网络信息安全问题越来越成为备受关注的话题。

近日,360公司正式发布了《2019智能网联汽车信息安全年度报告》,该报告从智能网联汽车网络安全发展趋势、新型攻击手段、汽车安全攻击事件、汽车安全风险总结和安全建设建议等方面对2019年智能网联汽车信息安全的发展做了梳理。

值得注意的是,该报告指出,在2019年车联网出现了两种新型攻击方式,一种是基于车载通信模组信息泄露的远程控制劫持,另一种则是基于生成式对抗网联(GSN)的自动驾驶算法攻击。其中,通信模组则是导致批量控车发生的根源。

“新四化”带来的新挑战

自2018年以来,汽车市场销量就一直呈现负增长。数据显示,2019年,我国汽车产销分别是2572.1万辆和2576.9万辆,同比下降7.5%和8.2%,但产业下滑幅度有所收窄。

也正是基于此背景,以“电动化、共享化、智能化、网联化”为核心的“新四化”成为行业发展共识。随着新四化不断推进,汽车原本几千上万数量的机械零部件,逐渐被电机电控、动力电池、整车控制器等在内的“三电”系统所取代。

其中,汽车电子电气架构也随之发生着颠覆性的变革,最突出的表现就在于从分布式架构逐步演进为域集中式架构或中央集中式架构。

具体来说,电子电器架构从分布式向集中式演变,未来软硬件也将会解耦,硬件不再被某一特定功能所独享,这也意味着,一点汽车软件被黑客破解劫持,那么共享的硬件将会面临非法调用、恶意占用等威胁。并且,未来关键ECU的功能整合程度会进一步提高,代码量的增加就会导致漏洞随之增长,一旦ECU自身遭到破解,黑客将劫持更多的控制功能。

另外,集中式架构中的中央控制网关称为车辆与外界沟通的重要通信组件,如果自身存在代码漏洞,被黑客利用就会导致车辆无法提供服务。

此外,集中式架构中的中央控制模版承担了主要功能的实现,如特斯拉Model 3的中央计算模块(CCM)直接整合了驾驶辅助系统(ADAS)和信息娱乐系统(IVI)两大域,以及外部连接和车内通信系统域功能

集中式架构中的中央控制模块承担了主要功能的实现,例如特斯拉 Model 3 的中央计算模块 (CCM) 直接整合了驾驶辅助系统 (ADAS) 和信息娱乐系统 (IVI) 两大域,以及外部连接和车内通信系统域功能。

Model 3内部的通信是由以太网总线串联,其在规避了CAN总线攻击的同时,却也带来了新的安全问题,如容易遭受跨 VLAN攻击,拒绝服务攻击等。而外部的通信包括车辆将直接与TSP服务器进行连接,如果身份认证、数据包防篡改、防重放等防护手段不够牢固,则面临批量远程控制车辆的威胁。

虽然说中央集中式的电子电气架构将算力向中央、云端集中,降低了自动化系统的成本,打破了高级别自动驾驶 方案的算力瓶颈。但与此同时,自动驾驶算法,如特斯拉自研的FSD芯片上运行的神经网络图像识别算法等的安全性也成为了业界关注的重点。

新型攻击方式

前文有所言,在此次报告中,360还披露了其发现的两种新型攻击方式。一种是基于车载通信模组信息泄露的远程控制劫持,另一种则是基于生成式对抗网联(GSN)的自动驾驶算法攻击。

基于车载通信模组信息泄露的远程控制劫持这一攻击方式,是通过TCU的调试接口或者存储模块获取到APN的联网信息和TSP日志信息,然后通过连接ESIM模块与车厂的TSP服务器进行通信。

据介绍,APN是运营商给厂商建立的一条专有网络,因为私网APN是专网,安全级别很高,直接接入到车厂的核心交换机上,绕过了网络侧的防火墙和入侵检测系统的防护。但是, 一旦黑客通过私有APN网络渗透到车厂的内部网络,则可实施进一步的渗透攻击,实现远程批量控制汽车。

在此前一次演讲中,360Sky-Go的安全研究人员发现中国国内大部分自主品牌汽车,均使用私有APN连接车控相关的TSP后端服务器。通过ISP 拉专线可以在一定程度上保护后端服务器的安全,但与此同时也给后端服务器带来了更多的安全风险。

原因在于,由于私有APN的存在,TSP虽然不会暴露于公网,但却导致了TSP的安全人员忽视了私有网络和TSP本身的安全问题,同时私有网络内没有设置严格的安全访问控制,过度信任T-Box, 使得T-Box可以任意访问私有网络内部资产。

同时,很多不必要的基础设施服务也暴露于APN私网内,将引发更多安全风险。因此,一旦黑客获取到智能汽车的T-Box通讯模块,即可通过通讯模块接入车厂私有网络,进而攻击车厂内网,导致TSP沦陷。

基于生成式对抗网联(GSN)的自动驾驶算法攻击的发生则是源于在深度学习模型训练过程中,缺失了对抗样本这类特殊的训练数据。在目前深度学习的实际应用中,通过研究人员的实验证明,可以通过特定算法生成相应的对抗样本,直接攻击图像识别系统。因此,当前的神经网络算法仍存在一定的安全隐患,值得引起我们的注意。

除了这两种新型攻击方式之外,还有一种攻击方式值得我们注意,就是数字钥匙。

据介绍,数字车钥匙可用于远程召唤,自动泊车等新兴应用场景,这种多元化的应用场景也导致数字钥匙易受攻击。原因在于,数字车钥匙的“短板效应”显著,身份认证、加密算法、密钥存储、数据包传输等任一环节遭受黑客入侵,则会导致整个数字车钥匙安全系统瓦解。目前常见的攻击方式是通过中继攻击方式,将数字车钥匙的信号放大,从而盗窃车辆。

未来智能汽车的安全

在手机行业,从传统功能机升级换代到智能机,一直伴随着的就是网络信息安全问题,即使在现如今智能手机如此发达的时期,也不可避免的出现网络诈骗现象。

与手机行业相似的是,传统功能车升级换代到智能网联车,其势必也将会面临网络信息安全问题。然而,汽车不比手机,手机被网络黑客攻击,最多出现的就是财产损失。但汽车一旦被黑客攻击或劫持,很有可能会出现严重的交通事故。

基于此,360在报告中提出了5点建议:

第一、建立供应商关键环节的安全责任体系,可以说汽车网络安全的黄金分割点在于对供应商的安全管理。“新四化”将加速一级供应商开发新产品,届时也会有新一级供应商加入主机厂采购体系,原有的供应链格局将被重塑。供应链管理将成为汽车网络安全的新痛点,主机厂应从质量体系,技术能力和管理水平等多方面综合评估供应商。

第二、推行安全标准,夯实安全基础。2020 年,将是汽车网络安全标准全面铺开的一年。根据ISO21434等网络安全标准,在概念、开发、生产、运营、维护、销毁等阶段全面布局网络安全工作,将风险评估融入汽车生产制造的全生命周期,建立完善的供应链管理机制,参照电子电器零部件的网络安全标准,定期进行渗透测试,持续对网络安全数据进行监控,并结合威胁情报进行安全分析,开展态势感知,从而有效地管理安全风险。

第三、构建多维安全防护体系,增强安全监控措施。被动防御方案无法应对新兴网络安全攻击手段,因此需要在车端部署安全通信模组、安全汽车网关等新型安全防护产品,主动发现攻击行为,并及时进行预警和阻断,通过多节点联动,构建以点带面的层次化纵深防御体系。

第四、利用威胁情报及安全大数据提升安全运营能力。网络安全环境瞬息万变,高质量的威胁情报和持续积累的安全大数据可以帮助车企以较小的代价最大程度地提升安全运营能力,从而应对变化莫测的网络安全挑战。

第五、良好的汽车安全生态建设依赖精诚合作。术业有专攻,互联网企业和安全公司依托在传统IT领域的技术沉淀和积累,紧跟汽车网络安全快速发展的脚步,对相关汽车电子电气产品和解决方案有独到的钻研和见解。只有产业链条上下游企业形成合力,才能共同将汽车网络安全提升到“主动纵深防御”新高度,为“新四化”的成熟落地保驾护航。

未来汽车安全问题势必是多种多样的,而对此只有产业链上下游共同努力,才能防范于未然。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

智能网联汽车测试矩阵法是什么

1.1 总线及网关系统安全测试汽车总线对通信数据、传输速度等方面的要求不同,通过总线网关可有效隔离子网内部通信,支持通信信息的协议转换,并能基于各类总线实现对网路、差错等方面的控制功能,总线网关是车身系统实现网络化的关键,测试总线和网关的安全性,需以运行环境和测试方法要求为依据完成总线安全HIL仿真测试环境的搭建,综合运用代码逆向工程、软件行为监控等关键技术分析总线和网关的体系结构,最终实现危险源和脆弱点的识别及对所存在安全风险的综合分析。1.2 V2X网络安全测试技术由于相关安全防护建设同智能网联汽车及车联网的发展不同步,智能网联汽车中仍存在很多漏洞,易给用户带来较大的安全威胁风险。智能网联汽车应用V2X技术过程中需处理分析海量数据,以实现安全驾驶功能,不断扩大的数据规模蕴含巨大价值,同时面临较大的安全风险,需针对V2X网络系统以真实场景为依据通过半实物仿真环境的搭建实现V2X安全测试的有效开展,通过安全加固V2X终端应用以确保其安全可信,具体可应用的技术包括:(1)V2X半实物仿真技术,以真实道路拓扑为依据通过移动地图的使用完成现场场景的构建,可对多种交通状况进行自主创建和设定实现多种V2X应用场景的模拟,将真实场景引入实验室使测试相关联的成本得以显著降低。(2)V2X安全性测试技术,该技术基于主动攻击测试技术,从攻击者视角主动分析V2X系统的缺陷或漏洞,对系统安全性通过攻击测试进行验证,中应用定位虚假信号源、精准识别虚假通信客体等技术以确保安全。1.3 功能及性能的软件测试方法安全性测试主要针对汽车驾驶身份、敏感信息、典型车载应用软件、智能网联汽车防破坏及自修复能力。安全性测试主体及测试途径包括:(1)基于渗透的安全性测试,主要对车联网系统通过模拟黑客输入进行攻击性测试,实现运行时存在安全漏洞的获取;(2)基于风险的安全性测试,把安全风险漏洞作为软件开发各阶段的考虑对象,通过使用异常场景、风险分析等技术完成测试;(3)基于威胁的测试,从软件外部角度出发识别安全威胁,对威胁实施过程建模,评估量化威胁等级。采用云测试模型进行性能压力测试,在服务器平台网站中上传并运行写好的自动化测试脚本,实现大用户负载、并发,以进一步提高应用软件性能测试水平。采用软件可靠性应用模型,将故障注入智能网联汽车系统中,对其行为进行分析,图1为可靠性测试框架。

车联网包含哪些技术?

车联网关键技术

1、射频识别技术

射频识别(radio frequency identification,RFID)技术是通过无线射频信号实现物体识别的一种技术,具有非接触、双向通信、自动识别等特征,对人体和物体均有较好的效果。RFID不但可以感知物体位置,还能感知物体的移动状态并进行跟踪。RFID定位法目前已广泛应用于智能交通领域,尤其是车联网技术中更是对RFID技术有强烈的依赖,成为车联网体系的基础性技术。RFID技术一般与服务器、数据库、云计算、近距离无线通信等技术结合使用,由大量的RFID通过物联网组成庞大的物体识别体系。

2、传感网络技术

车辆服务需要大量数据的支持,这些数据的原始来源正是由各类传感器进行采集。不同的传感器或大量的传感器通过采集系统组成一个庞大的数据采集系统,动态采集一切车联网服务所需要的原始数据,例如车辆位置、状态参数、交通信息等。当前传感器已由单个或几个传感器演化为由大量传感器组成的传感器网络,并且通能够根据不同的业务进行处性化定制。为服务器提供数据源,经过分析处理后作为各项业务数据为车辆提供优质服务。

3、卫星定位技术

随着全球定位技术的发展,车联网的发展迎来了新的历史机遇,传统的GPS系统成为了车联网技术的重要技术基础,为车辆的定位和导航提供了高精度的可靠位置服务,成为车联网的核心业务之一。随着我国北斗导航系统的日益完善并投入使用,车联网技术又有了新的发展方向,并逐步实现向国产化、自主知识产权的时期过渡。北斗导航系统将成为我国车联网体系的核心技术之一,成为车联网核心技术自主研发的重要开端。

4、无线通信技术

传感网络采集的少量处理需要通信系统传输出云才能得到及时的处理和分析,分析后的数据也要经过通信网络的传输才能到达车辆终端设备。考虑到车辆的移动特性,车联网技术只能采用无线通信技术来进行数据传输,因此无线通信技术是车联网技术的核心组成部分之一。在各种无线传输技术的支持下,数据可以在服务器的控制下进行交换,实现业务数据的实时传输,并通过指令的传输实现对网内车辆的实时监测和控制。

5、大数据分析技术

大数据(Big Data)是指借助于计算机技术、互联网,捕捉到数量繁多、结构复杂的数据或信息的集合体。在计算机技术和网络技术的发展推动下,各种大数据处理方法已经开始得到广泛的应用。常见的大数据技术包括信息管理系统、分布式数据库、数据挖掘、类聚分析等,成为不断推动大数据在车联网中应用的强大驱动力。

6、标准及安全体系

车联网作为一个庞大的物联网应用系统,包含了大量的数据、处理过程和传输节点,其高效运行必须有一套统一的标准体系来规范,从而确保数据的真实性和完整性,完成各项业务的应用。标准化已成为车联网技术发展的迫切要求,也是一项复杂的管理技术。另外,车辆联网和获取服务本身也是为了更好地为车辆安全行驶提供保障,因此安全体系的建立也十分重要。能否根据当前车联网发展情况,建立一套高效的标准和安全体系,已经成为决定未来车联网技术发展的关键因素。

汽车软件客户端的安全防护措施有哪些?

我认为,汽车软件客户端的安全防护措施主要有以下几点:

1.客户端安全防护

移动应用往往基于通用架构进行开发设计,安全逆向技术成熟,常成为攻击者进行协议分析和发起网络攻击的突破口。在应用正式发布之前,对主配文件Android Manifest.xml进行合理地配置,关闭Debuggable、allowBackup属性,同时关闭不需要与外界进行数据交互组件的exported属性,防止因为不合理地配置,造成移动应用安全风险。

同时,与国内外专业安全公司开展合作,通过代码混淆、字符串加密、变量名数字化、反调试等方式对车联网移动APP进行安全加固,防止移动应用被恶意破解、二次打包、逆向分析等。此外,在应用发布之前,邀请安全团队对车联网移动APP开展安全渗透测试,寻找漏洞并进行修复,借助安全厂商的力量提升车联网移动APP的安全。

2.通信安全防护

车联网环境中的车辆不再是一个独立的机械个体,而是借助各种通信手段和对外接口实现与外部终端进行数据交互。因此保证车联网移动APP自身安全以及提供安全可靠的对外通信策略对车辆与外部终端的连接和通信安全至关重要。

在车联网移动APP与TSP服务平台通信的过程中,使用HTTPS的安全通信协议,增加攻击者窃听破解的难度,同时使用基于公钥架构(Public Key Infrastructure,PKI)[5]的身份认证机制在每次通信时对车联网移动APP与TSP服务平台进行双向认证,保证通信双方的合法性。此外,在通信的过程中对关键数据流量进行加密处理,防止中间人攻击和重放攻击。

3. 数据安全防护

车联网移动APP在使用的过程中,会在本地手机端存储部分用户敏感信息,例如手机号、登录密码、车辆Vin码等。采用加密的方式对移动端的文件、数据库等多种格式数据内容进行安全存储,以免数据在移动终端存储不当造成数据泄露。同时,防止密钥被泄露,避免将密钥硬编码到代码中,采用密钥分散技术和白盒密钥加密技术,提高密钥的安全性。

4.业务安全防护

开发者应遵循移动应用的安全开发流程以及安全开发规范,将安全意识融入到软件开发生命周期的每个阶段。同时,开发人员应积极参加软件安全开发生命周期(S-SDLC)[6-7]培训,强化开发者的安全开发意识,严格按照安全开发规范进行开发。

0条大神的评论

发表评论